4186 measured reflections

 $R_{\rm int} = 0.043$

1864 independent reflections

1614 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Hydrazinyl-4-methyl-1,3-benzothiazole

Xu-Feng Liu,^a Xiao-Yong Yu^a and Shao-Liang Jiang^b*

^aDepartment of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, People's Republic of China, and ^bCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China Correspondence e-mail: naka80@yahoo.cn

Received 24 May 2011; accepted 26 May 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.028; wR factor = 0.057; data-to-parameter ratio = 15.3.

The title compound, $C_8H_9N_3S$, is almost planar (r.m.s. deviation = 0.019 Å) apart from the terminal $-NH_2$ grouping [deviation of the N atom = 0.286 (2) Å]. In the crystal, molecules are linked by $N-H\cdots N$ hydrogen bonds, generating (001) sheets.

Related literature

For related structures and their biactivity, see Sun & Cui (2008); Liu & Liu (2011); Liu*et al.* (2011*a*,*b*). For the synthesis, see: Patel *et al.* (2010).

Experimental

Crystal data

C ₈ H ₉ N ₃ S
$M_r = 179.24$
Monoclinic, P21
a = 3.893 (2) Å
b = 7.312 (4) Å
c = 14.137 (8) Å
$\beta = 93.416 \ (13)^{\circ}$

V = 401.7 (4) Å ³
Z = 2
Mo $K\alpha$ radiation
$\mu = 0.34 \text{ mm}^{-1}$
T = 113 K
$0.28 \times 0.18 \times 0.10~\text{mm}$

Data collection

- Rigaku Saturn CCD area-detector diffractometer
- Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2005) *T*_{min} = 0.910, *T*_{max} = 0.967

Refinement

I v

S 1 1

5

$R[F^2 > 2\sigma(F^2)] = 0.028$	H atoms treated by a mixture of
$vR(F^2) = 0.057$	independent and constrained
S = 1.02	refinement
864 reflections	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
22 parameters	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
restraints	Absolute structure: Flack (1983)
	836 Friedel pairs
	Flack parameter: -0.09 (6)

Table 1 Hydrogen-bond geometry (Å, °).

Tryarogon bona geometry (11, 7).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots N3^{i}$ $N3-H3A\cdots N1^{ii}$	0.89 (1) 0.92 (1)	2.30 (2) 2.21 (1)	2.996 (3) 3.077 (3)	135 (2) 156 (2)
	1		1	

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, -z + 1; (ii) -x + 1, $y - \frac{1}{2}$, -z + 1.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We thank the Social Practice of the Excellent Engineer Programs of Ningbo University of Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5894).

References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Liu, X.-F. & Liu, X.-H. (2011). Acta Cryst. E67, o202.
- Liu, X. H., Tan, C. X. & Weng, J. Q. (2011a). Phosphorus Sulfur Silicon Relat. Elem. 186, 552–557.
- Liu, X. H., Tan, C. X. & Weng, J. Q. (2011b). Phosphorus Sulfur Silicon Relat. Elem. 186, 558–564.
- Patel, N. B., Khan, I. H. & Rajani, A. D. (2010). Eur. J. Med. Chem. 45, 4293–4299.
- Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, Y.-F. & Cui, Y.-P. (2008). Acta Cryst. E64, 0690.

supplementary materials

Acta Cryst. (2011). E67, o1641 [doi:10.1107/S1600536811020149]

2-Hydrazinyl-4-methyl-1,3-benzothiazole

X.-F. Liu, X.-Y. Yu and S.-L. Jiang

Comment

Sulfur and nitrogen heterocyclic compounds have received considerable attention in recent years because of their medicinal and pesticidal importance, such as 1,3,4-thiadiazoles, pyrimidines, and 1,2,4-triazoles (Liu & Liu, 2011; Liu *et al.*, 2011a,b). For a related structure, see Sun & Cui (2008).

Single-crystal X-ray diffraction analysis reveals that the title compound crystallizes in the monoclinic space group P2(1). As shown in Fig. 1, the benzene and thiazole rings are almost in the same plane. As shown in Fig. 2, there are intermolecular N—H···N hydrogen bonds in the crystal.

Experimental

The title compound was prepared according to the literature procedures (Patel *et al.*, (2010). Colourless prisms of (I) were grown by the slow evaporation of an ethanol solution at room temperature.

Refinement

All the H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Fig. 2. The crystal packing for (I).

2-Hydrazinyl-4-methyl-1,3-benzothiazole

Crystal data	
C ₈ H ₉ N ₃ S	F(000) = 188
$M_r = 179.24$	$D_{\rm x} = 1.482 {\rm Mg m}^{-3}$
Monoclinic, P2 ₁	Mo K α radiation, $\lambda = 0.71073$ Å
a = 3.893 (2) Å	Cell parameters from 1356 reflections
b = 7.312 (4) Å	$\theta = 2.9 - 27.9^{\circ}$
c = 14.137 (8) Å	$\mu = 0.34 \text{ mm}^{-1}$
$\beta = 93.416 (13)^{\circ}$	T = 113 K
$V = 401.7 (4) \text{ Å}^3$	Prism, colorless
Z = 2	$0.28\times0.18\times0.10~mm$

Data collection

Rigaku Saturn CCD area-detector diffractometer	1864 independent reflections
Radiation source: rotating anode	1614 reflections with $I > 2\sigma(I)$
multilayer	$R_{\rm int} = 0.043$
Detector resolution: 14.63 pixels mm ⁻¹	$\theta_{\text{max}} = 27.9^\circ, \ \theta_{\text{min}} = 1.4^\circ$
ω and ϕ scans	$h = -5 \rightarrow 5$
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)	$k = -9 \rightarrow 9$
$T_{\min} = 0.910, \ T_{\max} = 0.967$	$l = -18 \rightarrow 18$
4186 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.028$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.057$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.006P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{max} < 0.001$
1864 reflections	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
122 parameters	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
5 restraints	Absolute structure: Flack (1983), 836 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.09 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.74281 (13)	0.41481 (6)	0.33097 (3)	0.01462 (12)
C5	0.2809 (5)	0.8047 (3)	0.18122 (14)	0.0144 (5)
N3	0.9465 (5)	0.4807 (2)	0.52579 (12)	0.0163 (4)

C2	0.5274 (5)	0.4513 (3)	0.13713 (13)	0.0163 (5)
H2A	0.6107	0.3333	0.1221	0.020*
N1	0.4899 (4)	0.7443 (2)	0.34709 (11)	0.0136 (4)
C4	0.2524 (5)	0.7352 (3)	0.08962 (14)	0.0158 (5)
H4	0.1480	0.8083	0.0403	0.019*
C6	0.4388 (5)	0.6942 (3)	0.25178 (13)	0.0127 (4)
C7	0.6412 (5)	0.6127 (3)	0.39382 (13)	0.0130 (4)
N2	0.7110 (4)	0.6159 (2)	0.49033 (12)	0.0150 (4)
C3	0.3711 (5)	0.5633 (3)	0.06809 (13)	0.0185 (5)
Н3	0.3451	0.5208	0.0046	0.022*
C1	0.5572 (5)	0.5186 (3)	0.22906 (13)	0.0124 (4)
C8	0.1482 (5)	0.9932 (3)	0.20484 (14)	0.0182 (5)
H8A	0.3296	1.0618	0.2404	0.027*
H8B	-0.0518	0.9812	0.2433	0.027*
H8C	0.0810	1.0585	0.1461	0.027*
H2	0.761 (6)	0.7236 (19)	0.5172 (16)	0.060 (10)*
H3A	0.861 (4)	0.423 (3)	0.5774 (10)	0.043 (7)*
H3B	1.153 (3)	0.531 (3)	0.5428 (12)	0.038 (8)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0167 (3)	0.0120 (2)	0.0151 (2)	0.0012 (3)	0.00115 (18)	0.0003 (2)
C5	0.0078 (11)	0.0166 (11)	0.0191 (11)	-0.0007 (10)	0.0026 (9)	0.0030 (9)
N3	0.0141 (11)	0.0180 (10)	0.0163 (9)	0.0006 (8)	-0.0015 (7)	0.0049 (8)
C2	0.0142 (11)	0.0169 (14)	0.0180 (10)	-0.0005 (9)	0.0029 (8)	-0.0029 (9)
N1	0.0139 (10)	0.0126 (9)	0.0142 (9)	0.0000 (7)	0.0007 (7)	0.0017 (7)
C4	0.0124 (12)	0.0188 (11)	0.0163 (11)	-0.0008 (9)	0.0004 (8)	0.0044 (9)
C6	0.0091 (10)	0.0132 (10)	0.0160 (10)	-0.0037 (9)	0.0032 (8)	0.0004 (9)
C7	0.0125 (11)	0.0137 (10)	0.0133 (10)	-0.0043 (9)	0.0033 (9)	-0.0010 (9)
N2	0.0186 (11)	0.0117 (9)	0.0145 (9)	0.0011 (8)	-0.0009(7)	0.0004 (8)
C3	0.0189 (13)	0.0231 (12)	0.0133 (10)	-0.0065 (9)	0.0009 (9)	-0.0015 (10)
C1	0.0113 (11)	0.0129 (11)	0.0129 (10)	0.0004 (9)	0.0005 (8)	0.0027 (8)
C8	0.0167 (13)	0.0162 (10)	0.0215 (11)	0.0010 (10)	-0.0008 (9)	0.0034 (9)

Geometric parameters (Å, °)

S1—C1	1.746 (2)	N1—C7	1.289 (2)
S1—C7	1.756 (2)	N1—C6	1.399 (2)
C5—C4	1.389 (3)	C4—C3	1.379 (3)
C5—C6	1.397 (3)	C4—H4	0.9500
C5—C8	1.516 (3)	C6—C1	1.407 (2)
N3—N2	1.420 (2)	C7—N2	1.375 (3)
N3—H3A	0.923 (9)	N2—H2	0.891 (9)
N3—H3B	0.903 (9)	С3—Н3	0.9500
C2—C3	1.387 (3)	С8—Н8А	0.9800
C2—C1	1.388 (2)	C8—H8B	0.9800
C2—H2A	0.9500	C8—H8C	0.9800

supplementary materials

C1—S1—C7	87.97 (10)	N1—C7—S1	117.74 (15)
C4—C5—C6	117.47 (18)	N2-C7-S1	118.61 (15)
C4—C5—C8	121.90 (18)	C7—N2—N3	115.08 (15)
C6—C5—C8	120.64 (17)	C7—N2—H2	117.6 (16)
N2—N3—H3A	110.0 (13)	N3—N2—H2	110.2 (17)
N2—N3—H3B	110.7 (14)	C4—C3—C2	121.44 (19)
H3A—N3—H3B	109.6 (12)	С4—С3—Н3	119.3
C3—C2—C1	117.26 (17)	С2—С3—Н3	119.3
С3—С2—Н2А	121.4	C2—C1—C6	121.80 (18)
C1—C2—H2A	121.4	C2C1S1	128.72 (15)
C7—N1—C6	109.43 (16)	C6—C1—S1	109.47 (14)
C3—C4—C5	121.98 (19)	С5—С8—Н8А	109.5
С3—С4—Н4	119.0	C5—C8—H8B	109.5
С5—С4—Н4	119.0	H8A—C8—H8B	109.5
C5-C6-N1	124.57 (18)	C5—C8—H8C	109.5
C5—C6—C1	120.04 (17)	H8A—C8—H8C	109.5
N1-C6-C1	115.39 (17)	H8B—C8—H8C	109.5
N1—C7—N2	123.57 (18)		
C6—C5—C4—C3	0.6 (3)	N1—C7—N2—N3	-165.94 (18)
C8—C5—C4—C3	-179.61 (17)	S1—C7—N2—N3	17.4 (2)
C4-C5-C6-N1	179.46 (18)	C5—C4—C3—C2	-0.4 (3)
C8-C5-C6-N1	-0.3 (3)	C1—C2—C3—C4	0.5 (3)
C4—C5—C6—C1	-0.9 (3)	C3—C2—C1—C6	-0.9 (3)
C8—C5—C6—C1	179.27 (16)	C3—C2—C1—S1	-179.19 (14)
C7—N1—C6—C5	179.87 (19)	C5—C6—C1—C2	1.1 (3)
C7—N1—C6—C1	0.3 (2)	N1-C6-C1-C2	-179.26 (17)
C6—N1—C7—N2	-176.41 (18)	C5—C6—C1—S1	179.73 (15)
C6—N1—C7—S1	0.3 (2)	N1—C6—C1—S1	-0.6 (2)
C1—S1—C7—N1	-0.54 (17)	C7—S1—C1—C2	179.11 (18)
C1—S1—C7—N2	176.31 (16)	C7—S1—C1—C6	0.61 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \mathbf{H} \cdots \!$
N2—H2···N3 ⁱ	0.89 (1)	2.30 (2)	2.996 (3)	135 (2)
N3—H3A…N1 ⁱⁱ	0.92 (1)	2.21 (1)	3.077 (3)	156 (2)
Symmetry codes: (i) $-x+2$, $y+1/2$, $-z+1$; (ii) $-x+1$, $y-1/2$, $-z+1$.				

Fig. 1

